Каналы управления в LTE
Информация, передаваемая на радиоинтерфейсе, делится на служебную информацию, которая транслируется по различным каналам управления, и на пользовательские данные канала PDSCH (Physical Downlink Shared Channel).
Радиоинтерфейс LTE поддерживает как частотное, так и временное дуплексирование восходящего и нисходящего каналов (FDD и TDD), что позволяет разворачивать сети даже при отсутствии спаренных диапазонов. Так как большинство операторов, запустивших LTE, имеют спаренные полосы частот, то в рамках данной статьи рассмотрим особенности именно FDD режима, его структуру кадра и соотношение между пользовательскими и служебными ресурсами.
Рис. 2. Структура кадра LTE в режиме FDD. Физические каналы LTE
FDD-кадр LTE состоит из десяти субкадров по 1 мс (NSFR=10). Каждый субкадр состоит из двух слотов, внутри которых может быть в зависимости от времени распространения (радиуса соты) либо 6 либо 7 OFDM-символов или ресурсных элементов. На рис. 2 показан случай с небольшим временем распространения (коротким циклическим префиксом, занимающим один OFDM-символ) и соответственно 7 символов в слоте.
Для синхронизации абонентов с сетью в первом субкадре каждого кадра по каналам первичной и вторичной синхронизации (PSS и SSS) передаются специальные последовательности. Они занимают 72 поднесущих (с учетом неиспользуемых ресурсных элементов по краям диапазона) – 72 OFDM-символа. В табл. 2. приводится описание физических каналов управления с указанием объема затрачиваемых на них частотно-временных ресурсов. NRB – число ресурсных блоков.
Как за 7 дней полюбить спорт и перейти на правильное питание: личный опыт
История
Спецификации любого поколения связи, как правило, относятся к изменению фундаментального характера обслуживания, несовместимым технологиям передачи, более высоким пиковым битрейтом, новыми полосами частот, более широким каналом полосы пропускания, выражаемой в единицах частоты — герцах, а также большей ёмкостью для множественной одновременной передачи данных (более высокой системой спектральной эффективности, измеряемой в бит/с/Гц/сектор).
Новые поколения мобильной связи начинали разрабатываться практически через каждые десять лет с момента перехода от разработок первого поколения аналоговых сотовых сетей в 1970-х годах (1G) к сетям с цифровой передачей (2G) в 1980-х годах. От начала разработок до реального внедрения проходило достаточное количество времени (например, сети 1G были внедрены в 1984 году, сети 2G — в 1991 году).
В 1990-х годах начал разрабатываться стандарт 3G, основанный на методе множественного доступа с кодовым разделением каналов (CDMA); он был внедрен только в 2000-х годах (в России — в 2002 году). Сети поколения 4G, основанные на IP-протоколе, стали разрабатываться в 2000 году и начали внедряться во многих странах с 2010 года.
В 2000 году, когда только шло освоение технологии связи третьего поколения 3G, один из ведущих производителей персональных компьютеров Hewlett-Packard и японский гигант сотовой связи NTT DoCoMo объявили о начале совместных исследований по разработке технологий передачи мультимедиа-данных в беспроводных сетях четвёртого поколения. Помимо них, разработки вели Ericsson и AT&T совместно с Nortel Networks.
Впоследствии появилось два действительно пригодных к реализации стандарта: LTE и WiMAX, которые, по мнению IMT Advanced, и стали новой эрой в развитии сети (сумятицу в умах конечных пользователей может создавать тот факт, что эти две версии несовместимы, и нельзя точно предсказать, как они будут конкурировать и какая из них в итоге доминирует).
LTE
Стандарт LTE разрабатывался в рамках 3GPP (The 3rd Generation Partnership Project) как продолжение CDMA и UMTS и первоначально не относился к четвёртому поколению мобильной связи. Международным союзом электросвязи как стандарт связи, отвечающим всем требованиям беспроводной связи четвёртого поколения, был избран десятый релиз LTE — LTE Advanced, который впервые был представлен японской компанией NTT DoCoMo. Так как данный стандарт можно реализовать на существующих сотовых сетях, то он стал более популярен у операторов сотовой связи. В апреле 2008 года компания Nokia заручилась поддержкой ряда компаний (Sony Ericsson, NEC) для развития стандарта LTE и придания этому стандарту конкурентоспособности против WiMAX. В том же году аналитическая компания Analysys Mason спрогнозировала увеличение роста потребности сотовых технологий, таких как LTE, нежели WiMAX.
Первая коммерческая сеть LTE была запущена 14 декабря 2009 года шведской телекоммуникационной компанией TeliaSonera совместно с Ericsson, в Стокгольме и Осло.
WiMAX
Стандарт WiMAX (или IEEE 802.16) разрабатывается созданной в июне 2001 года организацией WiMAX Forum и является продолжением беспроводного стандарта Wi-Fi, альтернативой выделенным линиям связи и DSL. У стандарта WiMAX много версий, но преимущественно они подразделяются на фиксированный WiMAX (спецификация IEEE 802.16d, также известная как IEEE 802.16-2004, которая была утверждена в 2004 году) и мобильный WiMAX (спецификация IEEE 802.16e, более известная как IEEE 802.16-2005, которая была утверждена в 2005 году). По названиям стандартов ясно, что фиксированный WiMAX предоставляет услуги только «статичным» абонентам после установления и закрепления соответствующего оборудования, а мобильный WiMAX предоставляет возможность подключения пользователям, передвигающимся в зоне покрытия со скоростью до 115 км/час. Преимуществом стандарта WiMAX было то, что он гораздо раньше стандарта LTE стал пригоден к коммерческой эксплуатации.
В настоящее время компаниями, составляющими WiMAX Forum, являются такие известные производители, как Intel Corporation, Samsung, Huawei Technologies, Hitachi, и многие другие.
Первую сеть, основанную на технологии WiMAX, построила в Канаде компания Nortel, 7 декабря 2005 года.
Через два дня услуги беспроводного широкополосного доступа в сеть интернет стала предоставлять украинская компания «Украинские новейшие технологии» (тем самым став первой в странах СНГ), на основе микросхем Intel PRO/Wireless 5116.
Как освободить частоты для 5G?
Для того, чтобы освободить частоты от занимающих его пользователей, есть несколько различных путем. Можно подождать, пока завершить срок действия разрешений на использование соответствующих РЭС либо окончится срок эксплуатации оборудования. Но такой подход требует времени.
Можно перевести РЭС в другой частотный диапазон или в другую географическую локацию-но оба варианта являются достаточно трудоемкими. Есть также пути частичного высвобождения частот за счет перехода к более современным технологиям, перевод пользователей РЭС на альтернативные технологии (например, проводные) либо модернизация РЭС с целью исключения помех.
Наиболее же эффективный путь, как считают в НИИР — это досрочное прекращение работы с РЭС с выплатой его владельцам компенсаций или альтернативным вариантом продолжения работы соответствующего оператора. Но Закон «О связи» и другие действующие на сегодняшний день нормативные акты не позволяют досрочно принудительно прекратить действия радиочастотных присвоений в интересах гражданских потребителей.
В связи с этим, как полагают в НИИР, необходим комплекс экономических, организационных и конструктивно-технических мер, направленных на внедрение перспективных методов перераспределения радиочастотного спектра, его высвобождение и применение современных решений динамического доступа к совместно используемым полосам частот.
- Короткая ссылка
- Распечатать
550 млрд руб. на отечественные спутники связи
Заключительная субтехнология это космические сети связи. В 2024 г. объем рынка соответствующих услуг в России составит 37,5 млрд руб. Среднегодовой темп роста рынка соответствующих услуг в России и в мире незначительный – 1-2%.
Российские технологии в данной сфере отстают от зарубежных. Так российские спутники на 70% состоят из зарубежной ЭКБ. В то же время в России есть собственная программная система управления космическими аппаратами.
Ожидается, что к 2024 г. в России заработает система широкополосного доступа в интернет «Экспресс-РВ», которая будет состоять из четырех спутников на высокоэллиптической орбите. Также ожидается появление спутниковой системы передачи данных для устройств интернета вещей «Марафон», которая будет состоять из 135 космических аппаратов и обслуживать 500 тыс. датчиков.
Инвестиции в запуск указанных систем должны составить 85 млрд руб. Также 10 млрд руб. будет направлено на совместную разработку и производство бортовых шлюзов LPWAN, элементов полезной нагрузки и типовых проектов спутниковых станций сопряжения для глобально-распределительной сети спутникового интернета вещей.
«Экспресс-РВ», «Марафон» и другие создающиеся и существующие спутниковые системы связи объединены в проект «Сфера». Общий размер инвестиций в данный проект составляет 550 млрд руб – это основная часть затрат на реализацию дорожной карты.
Что такое частотные диапазоны
Весь спектр частот был разделён на диапазоны (bands) международной организацией 3GPP. Их всего 72, но многие из них недоступны рядовому пользователю и используются для государственных нужд.
Частотные диапазоны (или радиодиапазоны) используются не только для мобильного доступа в интернет, но и для других целей:
- телевидение;
- радиовещание;
- военная связь;
- рации.
Они используют разные диапазоны, чтобы сигналы от устройств не мешали друг другу.
Применительно к мобильному интернету частотные диапазоны могут изменяться в зависимости от оператора связи и стандарта передачи данных (3G или LTE). В России под эти нужды выделено несколько отрезков от 300 до 3 000 МГц. Те же радиодиапазоны используются для мобильной связи формата GSM.
Теоретически все из них могут использоваться для передачи данных по стандарту четвёртого поколения и LTE, однако на практике всё не совсем так. Новая технология не моментально заменяет старую, а потому некоторые частоты законодательно закреплены под 3G-интернет.
История появления
Давайте немного поговорим о том, когда и кем был разработан переходный тип связи – рассмотрим краткую историю создания.
Стандарт UMTS 900 начал создаваться в 1992 году европейской организацией по стандартизации IMT-2000, впоследствии права на разработку перешли компании 3GPP. Первоначальная цель создания – внедрение исключительно в европейских странах.
Напоследок отметим, есть ли технология в России и каково ее распространение.
Распространение в России
В этой части статьи мы поговорим про распространение и частоты UMTS в России. Стандарт на территории РФ реализуется с 2007 года тремя операторами:
- МТС;
- Билайн;
- Мегафон.
В 2008 году сеть стабильно заработала в нескольких городах страны – первым это сделал Мегафон, запустив технологию на территории Северо-Западного региона (начиная с Санкт-Петербурга).
Отметим, что это – LTE/TD/SCDMA/UMTS. — это один из режимов работы современных смартфонов, позволяющий устройству переключаться между разными стандартами в зависимости от нахождения в определенной зоне покрытия. Подключение такого режима работы позволяет всегда оставаться на связи, даже при нахождении в труднодоступных районах с плохим покрытием.
Мы рассказали о том, что это такое – UMTS в телефоне, теперь вы сможете внимательно изучить представленную информацию и понять особенности и преимущества использования данного типа передачи данных. Читайте наш обзор и пополняйте знания о работе телефонов, занимающих огромное место в жизни современного человека.
Почему в России до сих пор нет 5G
На момент публикации материала в России не существовало ни одной полноценной сети пятого поколения, доступной обычным абонентам операторов связи. ГКРЧ разрешила строить такие сети в диапазоне 24,25–24,5 ГГц, как сообщал CNews, в марте 2020 г., притом разрешение распространялось как на обычные сети, так и на специализированные – технологические и корпоративные.
Изначально использование российского «железа» при строительстве 5G не было безальтернативным. Все изменилось в середине июня 2020 г., когда Минцифры России (ранее – Минкомсвязи) выступило с предложением по кардинальному изменению федерального проекта «Информационная инфраструктура» из состава нацпрограммы «Цифровая экономика», в рамках которого и производится строительство новых сотовых сетей.
Минцифры предложило идею отложить строительство сетей 5G в России до 2024 г. и создавать их исключительно на российском оборудовании. Операторы связи сразу же воспротивились этому – как сообщал CNews, они раскритиковали эту идею, сославшись на то, что четырехлетняя задержка приведет к отставанию России от мировых лидеров во многих отраслях экономики.
В конце июля 2020 г., несмотря на отсутствие отечественного 5G-оборудования, в России была выдана первая лицензия на строительство соответствующих сетей на территории России. Роскомнадзор предоставил ее оператору МТС, и срок ее действия истекает 16 июля 2025 г.
«Международный» диапазон 3,4-3,6 ГГц МТС не достался – его сеть будет функционировать на частотах от 24,25 до 24,65 ГГц. Первыми абонентами такой сети станут бизнес-клиенты МТС и крупные производственные предприятия, а сроки ее запуска на момент публикации материала известны не были.
- Короткая ссылка
- Распечатать
Мобильные спутниковые станции Минобороны — помеха для 5G
Как уже отмечалось, земные станции и центры спутниковой связи могут быть как стационарными, так и мобильными. Стационарные центры и станции устанавливаются в специальных технических зданиях (незащищенных) или в подземных сооружениях (защищенные).
Мобильные станции могут быть оперативно транспортированы к месту развертывания и способны к автономной работе в полевых условиях либо в составе подвижного пункта управления. Основу таких станций составляют полевые станции, устанавливаемые на автомобилях и бронеобъектах, а также перевозимые в контейнерах или носимые.
При запуске сетей 5G для исключения создания помех стационарным станциям спутниковой связи можно будет рассчитать координационные зоны и обозначить их на карте. А вот для мобильных станций сделать это не представляется возможным в силу неопределенности мест их стояния.
Кроме того, в диапазоне 3,4-3,45 ГГц у Минобороны работают командно-измерительные станции (КИС), предназначенные для управления спутниковыми аппаратами и входящими в состав отдельного командно-измерительного комплекса (ОКИК). В свою очередь, такой комплекс входит в состав основных частей управления космическими аппаратами (НАКУ) Главного испытательного центра испытаний и управления космическими средствами им. Г.С. Титова.
НАКУ Минобороны управляет 85% российских космических аппаратов. Центр может управлять всеми типами спутников военного и двойного назначения и большинством спутников научного и социально-технического назначения. Также НАКУ используется при управлении объектами пилотируемых программ и дальнего космоса, которые не подчиняются Минобороны.
Ключевые показатели стандарта 5G и технологии
- пиковая скорость передачи данных на линии вниз (Downlink) 20 Гбит/с (спектральная эффективность 30 бит/с/Гц);
- пиковая скорость передачи данных на линии вверх (Uplink) 10 Гбит/с (спектральная эффективность 15 бит/с/Гц);
- минимальная задержка в подсистеме радиодоступа для сервисов URLLC — 0,5 мс, для сервисов eMBB — 4 мс;
- максимальная плотность подключенных к сети в городских условиях устройств из мира IoT – 1’000’000 устройств/кв.км;
- автономная работа устройств из мира IoT без подзарядки аккумулятора в течение 10 лет;
- поддержка мобильности при максимальной скорости передвижения объектов 500 км/ч.
некоторых
Частота и ширина полос
Блок радиочастот | Радиочастотный диапазон |
---|---|
FR1 | 450 MHz – 6 000 MHz |
FR2 | 24’250 MHz – 52’600 MHz |
Massive MIMO и Beam Forming (формирование луча)
2D MIMO антенна (слева) и Massive MIMO антенна (справа)
- мощный сигнал на выходе в направлении к UE;
- сильный уровень сигнал/шум в направлении от UE;
- отсутствие межсотовой интерференции;
- значительное увеличение количества каналов связи на одну соту.
Sub6G | mmWave | |
---|---|---|
Порядок MIMO | до 8х8 | 2х2 |
Смысл | Статичное пространственное мультиплексирование для множества пользователей | Динамическое формирование луча для одного пользователя |
Характеристика | Многолучевое распространение, идеален для пространственного мультиплексирования. Протяженная зона покрытия, покрытие внутри зданий. | Распространение в прямой видимости. Массовые соединения со сверх широкой полосой пропускания. |
Сценарии и примеры оказания услуг мобильной связи в сетях 5G
- eMBB (enhanced Mobile Broadband), сверхширокополосная мобильная связь;
- URLLC (Ultra-Reliable Low Latency Communication), сверхнадежная связь с низкими задержками;
- mMTC (Massive Machine-Type Communications), массовая межмашинная связь.
Три сценария оказания услуг мобильной связи
Дальность связи
Дальность связи определяется возможностью организации коммуникаций, т.е. силой радиочастотной связи между передатчиком и приемником и расстоянием, на котором они могут поддерживать надежное соединение. При работе на одной мощности и с использованием одинакового алгоритма модуляции, радиопередатчик, работающий на частоте 900 МГц, обеспечивает более надежную связь, чем передатчик на 2.4 ГГц. При увеличении частоты радиочастотного спектра, дальность передачи данных уменьшается, при условии, что все остальные параметры остаются неизменными. Способность проникать через стены и объекты с увеличением частоты также уменьшается. Верхние частоты в спектре демонстрируют отражающие свойства. Например, радиоволна 2.4 ГГц может отражаться от стен зданий и туннелей. Это может использоваться для распространения сигнала на большие расстояния. Возможные сложности связаны с возникновением многолучевого распространения или полным отсутствием сигнала, из-за обратного отражения.
Федеральная комиссия связи ограничивает выходную мощность радиопередатчиков с расширенным спектром. DSSS последовательно передает данные с низкой мощностью, как показано выше, и попадает в ограничения Федеральной комиссии связи. Это ограничивает расстояние передачи радиопередатчиков DSSS, и таким образом делает их неподходящими для промышленного рынка. FHSS-передатчики, с другой стороны, передают сигналы высокой мощности на определенных частотах в последовательности скачков, но средняя мощность остается низкой, поэтому соответствует предписаниям. FHSS-сигнал передается с большей мощностью, чем сигнал DSSS, что позволяет работать на больших расстояниях. Большинство передатчиков FHSS могут передавать данные более чем на 20 км или еще большие расстояния, используя антенны с большим коэффициентом усиления.
Радиопередатчики стандарта 802.11, доступны в формате DSSS и в FHSS. Они работают на широком диапазоне частот и со скоростью передачи данных до 54 Мбит/с. Но необходимо отметить, что указанная пропускная способность, очень сильно уменьшается с ростом расстояния между радиомодемами. Например, расстояние 100 м уменьшает скорость с 54 Мбит/с до 2 Мбит/с. Это идеально для небольших офисных или домашних приложений, но не для промышленных приложений, где необходимо передавать данные на несколько километров.
Так как узкополосные радиопередатчики работают на низких частотах, они могут быть хорошим решением в случае, если FHSS не могут обеспечить необходимую дальность передачи. Потребность в использовании узкополосных лицензируемых частот, возникает, когда нужно передать данные на большое расстояние, или передача должна проходить ближе к поверхности Земли, так как организация связи в зоне прямой видимости невозможна.
Характеристика
В основе стандарта связи третьего поколения, который является наиболее распространенным не только на отечественном рынке, но и во всем мире, лежит несколько протоколов: это UMTS/WCDMA, CDMA2000/IMT-MC, TD-CDMA/TD-SCDMA, DECT и UWC-136. Все они основаны на IMT-2000.
Передача данных производится пакетным способом. Работает технология одновременно в сантиметровом и дециметровом диапазонах, что создает возможность для выполнения наиболее популярных функций. Формат 3G, скорость передачи данных которого позволяет смотреть онлайн-видео, общаться по видеосвязи и пользоваться другими услугами Глобальной сети, поддерживается гаджетом у каждого второго.
Важно! На сегодняшний день в среднем по всему миру чаще всего используется только два стандарта — UMTS и CDMA2000. Они основаны на применении обычной мобильной технологии под названием Code Division Multiple Access, CDMA
UMTS
В английском варианте аббревиатура расшифровывается как Universal Mobile Telecommunications System. В переводе на русский — «универсальная система мобильной электросвязи». Разработана она на основе устаревшего ГСМ стандарта, который является вторым поколением. Популярна и распространена по всему миру.
Внедрение, работа и решение проблем касательно технологии лежит на специальной международной группе 3GPP. Все они работают под эгидой известной организации, которая занимается регулированием рынка мобильной связи — Международного союза электросвязи.
CDMA2000
Представленный стандарт создан для перехода от узкополосных систем с кодовым разделением каналов на системы третьего поколения. Практически не распространена в отечественных условиях, наиболее популярна в Азии и США.
Генеалогия стандартов
Следующая информация призвана разъяснить обывателю структуру существующих, вымерших стандартов. Ниже, в следующих разделах, будут описаны применявшиеся в России технологии. Жирным помечены соответствующие представители древа, украсивший русский лес.
2G: 1992
- Семейство GSM/3GPP: GSM, HSCSD, CSD.
- Семейство 3GPP2: cdmaOne.
- Семейство AMPS: D-AMPS.
- Прочее: iDEN, PHS, PDC, CDPD.
3G+
- Семейство 3GPP: LTE, HSPA, HSPA+.
- Семейство 3GPP2: CDMA2000 1xEV-DO R. A, CDMA2000 1xEV-DO R. B, CDMA2000 1xEV-DO R. C
- Семейство IEEE: Mobile WiMAX, Flash OFDM.
- LTE.
- 5G-NR.
Краткое описание
Генеалогия позволяет проследить вымершие виды. Например, современные авторы часто пользуются аббревиатурой GSM, вводя читателя в заблуждение. Технология целиком ограничена вторым поколением сотовой связи, вымерший вид. Прежние частоты с дополнениями продолжают использоваться потомками. 1 декабря 2016 года австралийский Телстра прекратил использование GSM, став первым в мире оператором, целиком обновившим оборудование. Технологией продолжают довольствоваться 80% населения планеты (согласно сведениям Ассоциации GSM). Примеру австралийских коллег 1 января 2017 года последовал американский AT&T. Последовала остановка сервиса оператором Optus, апрельским деньком 2017 Сингапур признал несоответствие 2G возрастающим потребностям населения.
Итак, термин GSM используется применительно к устаревающему оборудованию, завалившему РФ. Протоколы-потомки могут быть названы наследниками GSM. Частоты следующими поколениями сохранены. Меняются проколы, методы передачи информации. Ниже рассмотрены аспекты распределения частот, сопровождающие модернизацию оборудования. Обязательно приводятся сведения, позволяющие установить родство GSM.
Как понять, что вам пора принимать протеиновые добавки
Рисунок 2.5-График корреляционной функции для коррелированного процесса АР
Для белого шума корреляционная функция должна быть дельта — функцией (в идеальном случае), в реальном случае же будут наблюдаться некоторые колебания функции относительно нуля.
2.6 Frequency Hopping
Frequency Hopping (FHSS)методов расширения спектра
- Уменьшение влияния интерференции. Благодаря частой смене частоты, интерференция может влиять на сигнал лишь в течение короткого промежутка времени.
- Защита данных от несанкционированного доступа. Не зная алгоритма, по которому изменяется частота сигнала, невозможно выделить нужные данные из шумоподобного потока.
- Усложнение глушения сигнала. Frequency Hopping затрудняет «нацеленное» (т.е. глушение определенного устройства, либо совокупности устройств) глушение сигнала. В этом случае приходится глушить весь занимаемый диапазон частот, что требует использования более дорого и мощного оборудования.
Характеристика стандарта
Мобильная связь третьего поколения строится на основе пакетной передачи данных. Сети третьего поколения 3G работают на границе дециметрового и сантиметрового диапазона, как правило, в диапазоне около 2 ГГц, передавая данные со скоростью до 3,6 Мбит/с[источник не указан 572 дня]. Они позволяют организовывать видеотелефонную связь, смотреть на мобильном телефоне фильмы и различный контент.
3G включает в себя 5 стандартов семейства IMT-2000 (UMTS/WCDMA, CDMA2000/IMT-MC, TD-CDMA/TD-SCDMA (собственный стандарт Китая), DECT и UWC-136).
Наибольшее распространение в мире получили два стандарта[источник не указан 572 дня]:
- UMTS (или W-CDMA) и
- CDMA2000 (IMT-MC),
в основе которых лежит одна и та же технология — CDMA (Code Division Multiple Access — множественный доступ с кодовым разделением каналов).
В России IMT-MC доступен на радиочастотах диапазона 450 МГц (CDMA450).
Технология CDMA2000
Технология CDMA2000 обеспечивает эволюционный переход от узкополосных систем с кодовым разделением каналов IS-95 (американский стандарт цифровой сотовой связи второго поколения) к системам CDMA «третьего поколения» и получила наибольшее распространение на Североамериканском континенте, а также в странах Азиатско-Тихоокеанского региона[источник не указан 572 дня].
Технология UMTS
Технология UMTS (Universal Mobile Telecommunications System — универсальная система мобильной электросвязи) разработана для модернизации сетей GSM (европейского стандарта сотовой связи второго поколения), и получила широкое распространение не только в Европе, но и во многих других регионах мира[источник не указан 572 дня].
Работа по стандартизации UMTS координируется международной группой 3GPP (Third Generation Partnership Project), а по стандартизации CDMA2000 — международной группой 3GPP2 (Third Generation Partnership Project 2), созданными и сосуществующими в рамках ITU.
Распространённость
По данным Wireless Intelligence, на конец ноября 2006 года в мире насчитывалось 364 млн абонентов 3G, из них 93,5 млн были подключены к сетям UMTS и 271,1 млн — к СDMA2000. Крупнейший оператор — японский NTT DoCoMo, по состоянию на апрель 2010 года количество абонентов превышает 56 млн человек
Базовые услуги
В сетях 3G обеспечивается предоставление двух базовых услуг: передача данных и передача голоса.
Согласно регламентам ITU (International Telecommunications Union — Международный Союз Электросвязи) сети 3G должны поддерживать следующие скорости передачи данных:
- для абонентов с высокой мобильностью (до 120 км/ч) — не менее 144 кбит/с;
- для абонентов с низкой мобильностью (до 3 км/ч) — 384 кбит/с;
- для неподвижных объектов — 2048 Кбит/с.
Тенденции
Основные тенденции сетей 3G:
- преобладание трафика data-cards (USB-модемы, ExpressCard/PCMCIA-карты для ноутбуков) над трафиком телефонов и смартфонов 3G;
- постоянное снижение цены 1 Мб трафика, обусловленное переходом операторов к более совершенным и эффективным технологиям.